Ein deutsch-chinesisches Forschungsteam hat unter der Leitung von Prof. Dr. Francesco Ciucci (Universität Bayreuth) eine neue Methode der elektrochemischen Wasserspaltung entwickelt. Diese reduziert den Edelmetallverbrauch, steigert die Effizienz der Sauerstoffentwicklungsreaktion (OER) und könnte die nachhaltige Wasserstoffproduktion verbessern.
Wasserstoff ist aufgrund seiner einzigartigen Eigenschaften von entscheidender Bedeutung für Technologie und Industrie: Es ist das leichteste chemische Element, hat eine enorm hohe Energiedichte und ist ein emissionsfreier Brennstoff, da als Nebenprodukt beim Verbrennen nur Wasser entsteht. Dadurch ist Wasserstoff als saubere Energiequelle äußerst attraktiv. Aber die Herstellung ist bisher noch extrem Energieaufwändig: Wasserstoff kann über die elektrochemische Spaltung von Wasser produziert werden, bei der Elektroden im Wasser unter Strom gesetzt werden. Eine energiesparende und effiziente Herstellung von Wasserstoff durch elektrochemische Wasserspaltung mit erneuerbarem Strom kann die Nachhaltigkeit dieser Energiequelle maßgeblich verbessern.
Herausforderung bei der Sauerstoffentwicklungsreaktion (OER)
Eine der größten Herausforderungen bei der elektrochemischen Wasserspaltung ist die sogenannte Sauerstoffentwicklungsreaktion (OER), eine träge Reaktion, bei der die Wassermoleküle in ihre einzelnen Bestandteile – Sauerstoff und Wasserstoff – zerlegt werden. Die OER kann durch den Einsatz von bestimmten Edelmetallen beschleunigt werden, jedoch sind die Metalle selten und dadurch teuer, und die Beschleunigung der Reaktion kostet zusätzliche Energie (sog. Überspannung).
Dieser Problematik hat sich ein Forschungsteam, bestehend aus Mitgliedern diverser chinesischer Forschungseinrichtungen und unter Federführung von Prof. Dr. Francesco Ciucci vom Lehrstuhl für Elektrodendesign für elektrochemische Energiesysteme an der Universität Bayreuth, angenommen. Es entwickelte eine innovative Methode der elektrochemischen Wasserspaltung, in der einzelne Atome des Edelmetalls Iridium als Reaktionsbeschleuniger mit Dimethylimidazol und Kobalteisenhydroxid gekoppelt sind. Die wesentliche Innovation liegt in der geometrischen Anordnung der Komponenten: Die aneinander gekoppelten Bestandteile dieser Iridium-Verbindung befinden sich nicht auf derselben Ebene, sondern sind geometrisch verteilt, um die Leistung und Effizienz zu optimieren.
Dieser innovative Ansatz erhöht die OER-Aktivität erheblich und weist darüber hinaus eine enorm geringe Überspannung auf. Zudem reduziert er den Edelmetallverbrauch, weil nur einzelne Iridiumatome verwendet werden, und wirkt sich positiv auf die Stabilität der Beschleunigungsreaktion aus.
„Unsere Studie ist ein bedeutender Fortschritt in der Entwicklung effizienter, kostengünstiger OER-Beschleunigung für eine nachhaltige Wasserstoffproduktion. Durch die Überwindung des Schlüsselproblems der derzeitigen Technologie hat unser Ergebnis das Potenzial, den globalen Übergang zu sauberen Energielösungen voranzutreiben“, sagt Ciucci, der Letztautor der Studie ist.
Originalpublikation: Out-of-plane coordination of iridium single atoms with organic molecules and cobalt-iron hydroxides to boost oxygen evolution reaction. Nature Nanotechnology (2024). DOI: https://doi.org/10.1038/s41565-024-01807-x