Für die Mobilität von morgen werden neue Leichtbaukonzepte ebenso benötigt, wie eine in jeder Hinsicht ressourcenschonende Energiewandlung, die sichere und leistungsfähige Energiespeicherung für größere Reichweiten von Elektrofahrzeugen ermöglicht, sowie intelligente Fertigungs- und Fügeverfahren für neue Werkstoffgenerationen im Leichtbau.
Batterieentwicklung für bessere Performance
Bereits seit mehr als 25 Jahren forscht das Fraunhofer-Institut für Silicatforschung (ISC) im Bereich Energiespeicherung, um Batterien mit langer Lebensdauer, kurzen Ladezeiten und möglichst viel Energiedichte zu erhalten. Seit 2011 konzentriert sich diese Forschungsarbeit im Zentrum für Angewandte Elektrochemie ZfAE, das in einem internationalen 37-köpfigen Team neue Materialien und Batteriekomponenten wie Elektroden, aktive Speichermaterialien, Elektrolyte und Separatoren sowie adäquate Test- und Analyseverfahren entwickelt. Dies umfasst funktionelle Schutzbeschichtungen für moderne Elektrodenmaterialien (Hochenergiekathoden) und Materialien für zukünftige Festkörperbatterien aus organisch-anorganischen Hybridpolymeren bis hin zu reinen Glaskeramiken, die eine sehr hohe chemische Stabilität und damit eine längere Haltbarkeit gewährleisten. Neben ausgereiften Materialien hat auch die Elektroden- und Zellfertigung einen wesentlichen Einfluss auf die Leistungsfähigkeit von Batterien. So kann ein gutes Zelldesign interne Verspannungen vermeiden und eine maßgebliche Steigerung der Batterielebensdauer ermöglichen. Diese und weitere materialspezifische Wirkmechanismen – häufig abhängig von den Nutzerprofilen und Ladestrategien –, die zur Zellalterung und Materialausfällen führen, untersucht das Zentrum an Labordemonstratoren und kommerziellen Zellen. Mit hocheffizienten Multikanal-Testverfahren unter kontrollierten Klimabedingungen und speziellen Verfahren der elektrochemischen Charakterisierung – beispielsweise Leitfähigkeitsuntersuchungen mit submikrometergenauer Auflösung im Rasterelektronenmikroskop – können Defekte, Veränderungen oder Alterungserscheinungen unter realen Betriebsbedingungen identifiziert werden. Simulationen und Testverfahren unterstützen die effiziente Entwicklung besserer Speicherzellen mit höherer Leistung, verbesserter Performance und gleichbleibenden Herstellungskosten. Diese Kompetenzen nutzt das ZfAE für verschiedene Projekte wie ABattreLife und PEDElEc.
Rohstoffsubstitution für Hochleistungsmagnete
Im Bereich der Energiewandlung spielen Hochleistungsmagnete eine herausragende Rolle. Für Magnete in Generatoren und Elektromotoren, wie sie in der Elektromobilität, aber auch bei der Nutzung regenerativer Energien essenziell wichtig sind, werden jedoch Seltenerdelemente wie Neodym (ND) und Dysprosium (Dy) benötigt. Da ihre Verfügbarkeit als kritisch bewertet wird, bilden Alternativen aus zuverlässig und kostengünstig verfügbaren Rohstoffen einen wesentlichen Arbeitsschwerpunkt der Fraunhofer-Projektgruppe IWKS in Hanau. Auf Basis von Simulationen werden Modelle neuartiger, ferromagnetischer Phasen ohne Neodym (Nd) und Dysprosium (Dy) bei gleichwertigen magnetischen Eigenschaften erstellt. Diese Modelle dienen als Grundlage zur Synthese neuer Magnetwerkstoffe. Neben der reinen Substitution von Werkstoffen arbeitet die Projektgruppe IWKS an effizienten Recyclingverfahren für Altmagnetmaterialien auf Basis von schmelzmetallurgischen oder wasserstoffgestützten Prozessen.
Generative Fertigung von Keramikverbundmaterialien
Mit modernen generativen Fertigungsmethoden entwickelt und fertigt das Fraunhofer-Zentrum HTL in Bayreuth kundenspezifische Bauteile und Prototypen aus keramischen, metall-keramischen und metallischen Komponenten. Dabei zielt das HTL nicht nur auf die schnelle und kostengünstige Herstellung ab, sondern auch auf die Erschließung neuer Konstruktionsmöglichkeiten und Designprinzipien für innovative Leichtbaukonzepte. Dafür stehen am HTL zwei verschiedenartige, komplementäre Verfahren zur Verfügung. Kleine, hochkomplexe Bauteile Bauteile aus technischer Keramik werden mittels Stereolithographie gefertigt, die hohen mechanischen, thermischen oder tribologischen Belastungen ausgesetzt sind oder hohe elektrische Durchschlagsfestigkeit besitzen müssen. Großvolumige metall-keramische und metallische Bauteile werden über Pulverdruck hergestellt.
Hochtemperaturfügetechnik für Keramiken und Komposite
Monolithische Keramiken sowie faserverstärkte Keramiken haben ein hohes Anwendungspotenzial als hochtemperaturbeständige Werkstoffe. Für die optimale Verarbeitung zu komplexen Strukturen und Bauteilen untersucht das HTL Fügeverfahren für kommerzielle Basismaterialien aus der eigenen Entwicklung. Die stoffschlüssigen Fügeverbindungen wurden mit kommerziellen und eigenentwickelten Glasloten sowie durch Verschweißen hergestellt. Als Fügeverfahren wurden das Hochtemperatursintern sowie zur Realisierung schneller Prozesszeiten ein CO2-Laser eingesetzt. Bei passend definierten Prozessparametern lassen sich so Fügeverbindungen mit Festigkeiten von bis zu 95 % der Materialgrundfestigkeit erzeugen.