• Skip to main content
  • Skip to secondary menu
  • Zur Hauptsidebar springen

Die Chemie Zeitschrift Österreichs

Das unabhängige Traditionsmagazin

  • Das Magazin
    • Blattgeschichte
    • 120 Jahre
    • Abonnement
    • Mediadaten
    • Online-Archiv
  • Resorts
    • Forschung
    • Foto Freitag
    • Messe
    • Publikation
    • Personalia
    • Bildung
    • Termine
    • News-Archiv 2015
    • News-Archiv 2016
    • News-Archiv 2017
    • News-Archiv 2018
    • News-Archiv 2019
  • Studienführer Chemie
  • Chemie-Lexikon
  • Links
    • L&B
    • labor
    • Kunststoff
  • Welkin Media Verlag
Aktuelle Seite: Startseite / Lexikon / Nanopartikel

Nanopartikel

25. Mai 2021 von Lexikon

Nanopartikel oder auch Nanoteilchen sind Verbünde von einigen wenigen bis einigen tausend Atomen oder Molekülen. Der Name Nano leitet sich aus dem griechischen Wort „nanos“ (Zwerg, zwergenhaft) ab und bezieht sich auf die Größe, die typischerweise bei 1 bis 100 Nanometern (Abkürzung: nm) liegt. Ein Nanometer entspricht 10−9 = 0,000 000 001 Meter = 1 Milliardstel Meter. Nanopartikel sind gemäß ISO/TS 27687:2008 Nanoobjekte mit drei äußeren Dimensionen.

Für Nanopartikel gibt es viele mögliche Anwendungsgebiete. So könnten sie z. B. zur Verbesserung diverser Materialien im Haushalt genutzt werden. In der Medizin könnte man mit Hilfe von Nanopartikeln einen zielgerichteten Transport von Medikamenten im Körper oder eine schonendere Form der Krebstherapie erzielen. Auch in der Elektrotechnik könnten Nanopartikel dazu beitragen, z. B. leistungsfähigere und kleinere Computer zu ermöglichen.

(a, b, and c) Bilder von präparierten Nanopartikeln mit Kantenlängen: (a) 20 nm, (b) 45 nm, and (c) 80 nm. SEM (d) wie (b). Starke Vergrößerung von Polymethylsiloxanpolyhydrat. | Foto: Nandiyanto - Eigenes Werk, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=5947359
(a, b, and c) Bilder von präparierten Nanopartikeln mit Kantenlängen: (a) 20 nm, (b) 45 nm, and (c) 80 nm. SEM (d) wie (b). Starke Vergrößerung von Polymethylsiloxanpolyhydrat. | Foto: Nandiyanto – Eigenes Werk, Gemeinfrei

Das hohe Nutzenpotential hat einen drastischen Anstieg in Herstellung und Anwendung der unterschiedlichsten Arten von Nanopartikeln zur Folge, doch es eröffnet sich auch ein breites Spektrum an möglichen Gefahren für uns und unsere Umwelt. Es ist noch äußerst unklar, welche Nanopartikel eine Wirkung auf Organismen haben. Um die möglichen Gefährdungen, welche von den Nanopartikeln während ihrer Herstellung, Verwendung und Entsorgung für die Umwelt ausgehen, abschätzen zu können, wurde die Nanoökotoxikologie etabliert. Sie entstand neben der bis dahin bereits bestehenden Ökotoxikologie, da Nanopartikel neuartige chemische und physikalische Eigenschaften aufweisen.

Eigenschaften nanoskaliger Partikel

Nanoteilchen besitzen spezielle chemische und physikalische Eigenschaften, die deutlich von denen von Festkörpern oder größerer Partikel abweichen. Dies sind unter anderem:

  • höhere chemische Reaktivität durch große spezifische Oberfläche (große Teilchenoberfläche im Verhältnis zum Volumen) möglich
  • geringer Einfluss von Massenkräften (Gewichtskraft) und zunehmender Einfluss von Oberflächenkräften (z. B. Van-der-Waals-Kraft)
  • zunehmende Bedeutung von Oberflächenladung (siehe DLVO-Theorie) sowie thermodynamischen Effekten (Brownsche Molekularbewegung)
  • daraus können stabile Suspensionen aber auch Aggregatbildung resultieren
  • spezielle optische Eigenschaften

Letztendlich beruhen diese Eigenschaften der Nanopartikel auf der extrem hohen Oberflächenladung, die Kompensation sucht. Diese erhöhte Reaktivität begrenzt jedoch die Lebensdauer als „singuläre Nanopartikel“ auf sehr kurze Zeiten. Wenn keine gezielte Isolation durch Ionen- bzw. Micellenbeladung erfolgt, kommt es sehr schnell zu Ladungsausgleich durch Agglomeration bzw. Aggregation (z. B. durch Ultraschall-Beschallung und Vortexen), die gemäß dem 2. Hauptsatz der Thermodynamik nur unter Einsatz entsprechend hoher Energieeinträge wieder zu lösen ist. Diese Lebensdauer singulärer Nanopartikel kann ein Kriterium bei der Risikobewertung darstellen und gelegentlich die Einbeziehung nanostrukturierter Materialien in Risikobewertungen ausschließen.

Vorkommen und Formen

Nanopartikel können sowohl auf natürlichem Wege (etwa Vulkanausbruch oder Waldbrand) als auch durch anthropogene (vom Menschen verursachte) Einflüsse, wie Kfz- und Industrieabgase, in die Umwelt gelangen. So versteht man unter Industrieruß lediglich sehr kleine Kohlenstoffteilchen, die z. B. auch bei Verbrennungsprozessen entstehen können.

Synthetische Nanopartikel sind künstlich hergestellte Teilchen, die gezielt mit neuen Eigenschaften und/oder Funktionalitäten ausgestattet sind, wie z. B. elektrische Leitfähigkeit, chemische Reaktivität. Synthetische Nanopartikel können entsprechend ihrer chemischen und physikalischen Eigenschaften untergliedert werden. In der Forschung und Anwendung weit verbreitete Gruppen sind:

  • Metall- und Halbmetall-Oxide (Siliciumdioxid (SiO2), Titandioxid (TiO2), Aluminiumoxid (Al2O3), Eisenoxide (Fe2O3 oder Fe3O4), Zinkoxid (ZnO) sowie Zeolithe und andere auf Silizium basierende mesoporöse Materialien wie MCM-41 oder SBA-15)
  • Halbleiter (Cadmiumtellurid (CdTe), Cadmiumselenid (CdSe), Silizium)
  • Metalle (Gold (Au), Silber (Ag), Eisen (Fe))
  • Metallsulfide

Kohlenstoffhaltige Nanopartikel können in unterschiedlichen Formen vorliegen:

  • Fullerene
  • Einzel- und mehrwandige Nanoröhren
  • Graphen
  • Nanofasern
  • Polymere wie Dendrimere und Blockcopolymere
  • Industrieruß (engl. carbon black)
  • Diamant-ähnlicher Kohlenstoff (engl. diamond-like carbon)
  • Zwiebel-ähnlicher Kohlenstoff (engl. onion-like carbon)

Herstellung

Es haben sich verschiedene Verfahren zur Herstellung von Nanoteilchen etabliert: Man unterscheidet zwischen Bottom-Up- und Top-Down-Verfahrensweisen, je nachdem ob ein Material nanostrukturiert wird (Top-Down) oder z. B. Partikel aus einer fluiden Phase synthetisiert werden.

Top-Down-Verfahren :

  • Mahlprozesse
  • Laserablation

oder über Lithographische Verfahren wie:

  • Fotolithografie
  • Elektronenstrahl-Lithographie
  • Nano-Imprint-Lithographie

Bottom-Up-Verfahren:

  • chemische Herstellung in Lösungen (z. B. Sol-Gel-Methode),
  • Herstellung im Plasma, bei gasförmigen Edukten, alternativ auch mittels eines beheizten Reaktors (z. B. chemische Gasphasenabscheidung),
  • Herstellung durch selbst organisiertes diffusionsbegrenztes Wachstum auf Oberflächen oder mit Templaten (z. B. Hydrothermalsynthese von nanoporösen Cetineiten),
  • Herstellung durch gezielte Nukleation von Molekülen aus der Gasphase (Aerosolprozess).
  • Elektrospinnen
  • Mikroemulsionstechniken
  • SMAD (solvated metal atom dispersion)

Je nach Einsatzgebiet der Nanoteilchen ist meist eine genau definierte und enge Partikelgrößenverteilung erforderlich. Abhängig von der chemischen Natur der gewünschten Nanoteilchen eignet sich das eine oder andere Verfahren besser, um ein gutes Ergebnis zu erreichen. Meist liefern Verfahren in Lösung oder Verfahren der Selbstorganisierung die besten Ergebnisse. Diese sind aber großtechnisch nur schwer oder gar nicht durchführbar.

Dieser Eintrag basiert auf dem Artikel Reinarum aus der freien Enzyklopädie Wikipedia. Es gilt die GNU-Lizenz für freie Dokumentation. Eine Liste der Autoren ist auf Wikipedia verfügbar.

Kategorie: Lexikon Stichworte: Nanopartikel, Nanoteilchen

Leser-Interaktionen

Trackbacks

  1. Nanoteilchen und ihre komplexen chemischen Reaktionen sagt:
    25. Mai 2021 um 12:00 Uhr

    […] Facetten besteht, die in unterschiedliche Richtungen orientiert sind, kann auch ein katalytisches Nanoteilchen unterschiedliche Facetten haben – und diese Facetten können unterschiedliche chemische […]

Haupt-Sidebar

Die aktuelle Chemie

Newsletter

  • Unser Newsletter-Archiv

Welkin Media News

Aktuelle Nachrichten aus unseren anderen Online-Portalen Lebensmittel-&Biotechnologie und Österreichische Kunststoffzeitschrift.

  • Pestizide auf Früchten in wenigen Minuten nachweisen
    am 28. Juni 2022 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Am schwedischen Karolinska Institutet wurde ein Nanosenor entwickelt, der Pestizide auf Früchten innerhalb weniger Minuten nachweisen kann. Hohe Produktionskosten und eine begrenzte Reproduzierbarkeit haben bisher eine breite Anwendung in der […]

  • PAT Downstream Processing: Kooperation von Merck und Agilent Technologies
    am 23. Juni 2022 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Merck und Agilent Technologies kooperieren bei der Weiterentwicklung von Prozessanalysetechnologien (PAT) für das Downstream Processing. PAT ist ein Schlüsselfaktor für die Echtzeitfreigabe und das Bioprocessing 4.0.und wird von den […]

  • DURAST: Feinpulver aus technischen Kunststoffen
    am 22. Juni 2022 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Die neue Serie der DURAST Pulver aus technischen Kunststoffen von Polyplastics ist mit einer Vielzahl von Verarbeitungsmethoden kompatibel. Die Feinpulver eignen sich, über Spritzgießen und Extrudieren hinaus, für die Kleinserienproduktion […]

  • Vindur CoolMaster DX: Präzisionsklimagerät von Weiss Technik
    am 21. Juni 2022 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Vindur CoolMaster DX von Weiss Klimatechnik ist ein neues, raumbasiertes Präzisionsklimagerät mit energieeffizienter Invertertechnologie. Es ist in drei Baugrößen erhältlich, frei skalierbar und auch in Räumen ohne Außenwand aufstellbar, […]

  • Coperion macht mit innovativer Seitendosierung Kunststoff-Recycling wirtschaftlicher
    am 20. Juni 2022 von Kerstin Sochor (Österreichische Kunststoffzeitschrift)

    Mit dem Ziel, das Recycling von leichten, sehr voluminösen Rezyklat-Fasern und -Flakes deutlich wirtschaftlicher und in manchen Fällen überhaupt erst möglich zu machen, hat Coperion eine neue Ausführung seiner Seitendosierung ZS-B entwickelt. […]

  • NYLEO: Hochleistungsfasern auf Nylon 66-Basis
    am 20. Juni 2022 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    DOMO Chemicals hat mit NYLEO eine neue Produktlinie an Hochleistungsfasern auf Nylon 66-Basis auf den Markt gebracht. Aufgrund seiner einzigartigen Eigenschaften bietet die Produktlinie ein breites Spektrum an Möglichkeiten für die Verbesserung […]

  • Merck investiert 440 Mio.€ in Irland
    am 17. Juni 2022 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Merck erweitert seine Kapazitäten für die Herstellung von Membranen und Filtrationsprodukten an seinem Standort Cork in Irland. Um rund 440 Mio. Euro werden Produktionskapazitäten für Membranen in Carrigtwohill ausgebaut und eine neue […]

  • BioFuture: modernste Biopharmazeutika-Produktionsanlage
    am 15. Juni 2022 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Novartis hat mit "BioFuture" in Schaftenau (Tirol) die weltweit modernste Produktionsanlage für Biopharmazeutika in Betrieb genommen. Das Gesamtinvestitionsvolumen beläuft sich auf 300 Millionen Euro, insgesamt entstehen rund 180 zusätzliche […]

  • Greiner AG mit Rekordumsatz 2021 von 2,2 Milliarden Euro
    am 15. Juni 2022 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Die österreichische Greiner AG hat mit mehr als 2,2 Milliarden Euro einen Rekordumsatz für das Geschäftsjahr 2021 erzielt. Die sichtbarsten Veränderungen 2021 waren die Veräußerung der Greiner Extrusion sowie die Bündelung der […]

  • 25 Jahre ohne Gentechnik in Österreich
    am 13. Juni 2022 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Anlässlich des 25. Jahrestags "ohne Gentechnik in Österreich“ finden zahlreiche Veranstaltungen rund um Lebensmittel ohne Gentechnik statt. Dabei werden im Juni 2022 die Erfolge des Gentechnik-Volksbegehrens von 1997 sowie der Gründung der ARGE […]

Schlagwörter

ABB Aktuelle Nachrichten über BASF analytica Analytik Analytik Jena Automation Automatisierung Awards B&R Bayer Borealis BR CEM Danfoss Digitalisierung Endress+Hauser Evonik FCIO Festo Finance Forschung Foto Freitag FotoFreitag Hardware Huber Industrie 4.0 Labor LANXESS Lenzing life science Messe Messe München MesseNews Nachhaltigkeit Nano OMV Personalia Polymerforschung Publikation Pumpen Recycling Shimadzu Studium TU Graz Webinar

Kategorien

Copyright © 2022 · WelkinMedia Fachverlag