Nanopartikel oder auch Nanoteilchen sind Verbünde von einigen wenigen bis einigen tausend Atomen oder Molekülen. Der Name Nano leitet sich aus dem griechischen Wort „nanos“ (Zwerg, zwergenhaft) ab und bezieht sich auf die Größe, die typischerweise bei 1 bis 100 Nanometern (Abkürzung: nm) liegt. Ein Nanometer entspricht 10−9 = 0,000 000 001 Meter = 1 Milliardstel Meter. Nanopartikel sind gemäß ISO/TS 27687:2008 Nanoobjekte mit drei äußeren Dimensionen.
Für Nanopartikel gibt es viele mögliche Anwendungsgebiete. So könnten sie z. B. zur Verbesserung diverser Materialien im Haushalt genutzt werden. In der Medizin könnte man mit Hilfe von Nanopartikeln einen zielgerichteten Transport von Medikamenten im Körper oder eine schonendere Form der Krebstherapie erzielen. Auch in der Elektrotechnik könnten Nanopartikel dazu beitragen, z. B. leistungsfähigere und kleinere Computer zu ermöglichen.
Das hohe Nutzenpotential hat einen drastischen Anstieg in Herstellung und Anwendung der unterschiedlichsten Arten von Nanopartikeln zur Folge, doch es eröffnet sich auch ein breites Spektrum an möglichen Gefahren für uns und unsere Umwelt. Es ist noch äußerst unklar, welche Nanopartikel eine Wirkung auf Organismen haben. Um die möglichen Gefährdungen, welche von den Nanopartikeln während ihrer Herstellung, Verwendung und Entsorgung für die Umwelt ausgehen, abschätzen zu können, wurde die Nanoökotoxikologie etabliert. Sie entstand neben der bis dahin bereits bestehenden Ökotoxikologie, da Nanopartikel neuartige chemische und physikalische Eigenschaften aufweisen.
Eigenschaften nanoskaliger Partikel
Nanoteilchen besitzen spezielle chemische und physikalische Eigenschaften, die deutlich von denen von Festkörpern oder größerer Partikel abweichen. Dies sind unter anderem:
- höhere chemische Reaktivität durch große spezifische Oberfläche (große Teilchenoberfläche im Verhältnis zum Volumen) möglich
- geringer Einfluss von Massenkräften (Gewichtskraft) und zunehmender Einfluss von Oberflächenkräften (z. B. Van-der-Waals-Kraft)
- zunehmende Bedeutung von Oberflächenladung (siehe DLVO-Theorie) sowie thermodynamischen Effekten (Brownsche Molekularbewegung)
- daraus können stabile Suspensionen aber auch Aggregatbildung resultieren
- spezielle optische Eigenschaften
Letztendlich beruhen diese Eigenschaften der Nanopartikel auf der extrem hohen Oberflächenladung, die Kompensation sucht. Diese erhöhte Reaktivität begrenzt jedoch die Lebensdauer als „singuläre Nanopartikel“ auf sehr kurze Zeiten. Wenn keine gezielte Isolation durch Ionen- bzw. Micellenbeladung erfolgt, kommt es sehr schnell zu Ladungsausgleich durch Agglomeration bzw. Aggregation (z. B. durch Ultraschall-Beschallung und Vortexen), die gemäß dem 2. Hauptsatz der Thermodynamik nur unter Einsatz entsprechend hoher Energieeinträge wieder zu lösen ist. Diese Lebensdauer singulärer Nanopartikel kann ein Kriterium bei der Risikobewertung darstellen und gelegentlich die Einbeziehung nanostrukturierter Materialien in Risikobewertungen ausschließen.
Vorkommen und Formen
Nanopartikel können sowohl auf natürlichem Wege (etwa Vulkanausbruch oder Waldbrand) als auch durch anthropogene (vom Menschen verursachte) Einflüsse, wie Kfz- und Industrieabgase, in die Umwelt gelangen. So versteht man unter Industrieruß lediglich sehr kleine Kohlenstoffteilchen, die z. B. auch bei Verbrennungsprozessen entstehen können.
Synthetische Nanopartikel sind künstlich hergestellte Teilchen, die gezielt mit neuen Eigenschaften und/oder Funktionalitäten ausgestattet sind, wie z. B. elektrische Leitfähigkeit, chemische Reaktivität. Synthetische Nanopartikel können entsprechend ihrer chemischen und physikalischen Eigenschaften untergliedert werden. In der Forschung und Anwendung weit verbreitete Gruppen sind:
- Metall- und Halbmetall-Oxide (Siliciumdioxid (SiO2), Titandioxid (TiO2), Aluminiumoxid (Al2O3), Eisenoxide (Fe2O3 oder Fe3O4), Zinkoxid (ZnO) sowie Zeolithe und andere auf Silizium basierende mesoporöse Materialien wie MCM-41 oder SBA-15)
- Halbleiter (Cadmiumtellurid (CdTe), Cadmiumselenid (CdSe), Silizium)
- Metalle (Gold (Au), Silber (Ag), Eisen (Fe))
- Metallsulfide
Kohlenstoffhaltige Nanopartikel können in unterschiedlichen Formen vorliegen:
- Fullerene
- Einzel- und mehrwandige Nanoröhren
- Graphen
- Nanofasern
- Polymere wie Dendrimere und Blockcopolymere
- Industrieruß (engl. carbon black)
- Diamant-ähnlicher Kohlenstoff (engl. diamond-like carbon)
- Zwiebel-ähnlicher Kohlenstoff (engl. onion-like carbon)
Herstellung
Es haben sich verschiedene Verfahren zur Herstellung von Nanoteilchen etabliert: Man unterscheidet zwischen Bottom-Up- und Top-Down-Verfahrensweisen, je nachdem ob ein Material nanostrukturiert wird (Top-Down) oder z. B. Partikel aus einer fluiden Phase synthetisiert werden.
Top-Down-Verfahren :
- Mahlprozesse
- Laserablation
oder über Lithographische Verfahren wie:
- Fotolithografie
- Elektronenstrahl-Lithographie
- Nano-Imprint-Lithographie
Bottom-Up-Verfahren:
- chemische Herstellung in Lösungen (z. B. Sol-Gel-Methode),
- Herstellung im Plasma, bei gasförmigen Edukten, alternativ auch mittels eines beheizten Reaktors (z. B. chemische Gasphasenabscheidung),
- Herstellung durch selbst organisiertes diffusionsbegrenztes Wachstum auf Oberflächen oder mit Templaten (z. B. Hydrothermalsynthese von nanoporösen Cetineiten),
- Herstellung durch gezielte Nukleation von Molekülen aus der Gasphase (Aerosolprozess).
- Elektrospinnen
- Mikroemulsionstechniken
- SMAD (solvated metal atom dispersion)
Je nach Einsatzgebiet der Nanoteilchen ist meist eine genau definierte und enge Partikelgrößenverteilung erforderlich. Abhängig von der chemischen Natur der gewünschten Nanoteilchen eignet sich das eine oder andere Verfahren besser, um ein gutes Ergebnis zu erreichen. Meist liefern Verfahren in Lösung oder Verfahren der Selbstorganisierung die besten Ergebnisse. Diese sind aber großtechnisch nur schwer oder gar nicht durchführbar.
Dieser Eintrag basiert auf dem Artikel Nanopartikel aus der freien Enzyklopädie Wikipedia. Es gilt die GNU-Lizenz für freie Dokumentation. Eine Liste der Autoren ist auf Wikipedia verfügbar.
[…] Facetten besteht, die in unterschiedliche Richtungen orientiert sind, kann auch ein katalytisches Nanoteilchen unterschiedliche Facetten haben – und diese Facetten können unterschiedliche chemische […]