• Skip to main content
  • Skip to secondary menu
  • Zur Hauptsidebar springen

Die Chemie Zeitschrift Österreichs

Das unabhängige Traditionsmagazin

  • Das Magazin
    • Über die Österreichische Chemie Zeitschrift
    • 120 Jahre
    • Abonnement
    • Mediadaten
    • Online-Archiv
  • Resorts
    • Forschung
    • Foto Freitag
    • Messe
    • Publikation
    • Personalia
    • Bildung
    • Termine
    • News-Archiv 2015
    • News-Archiv 2016
    • News-Archiv 2017
    • News-Archiv 2018
    • News-Archiv 2019
  • Studienführer Technische Chemie
  • Chemie-Lexikon
  • Links
    • L&B
    • labor
    • Kunststoff
  • Welkin Media Verlag
Aktuelle Seite: Startseite / Lexikon / UV/VIS-Spektroskopie

UV/VIS-Spektroskopie

30. Januar 2016 von Lexikon

Die UV/VIS-Spektroskopie ist ein zur optischen Molekülspektroskopie gehörendes spektroskopisches Verfahren, das elektromagnetische Wellen des ultravioletten (UV) und des sichtbaren (englisch visible, VIS) Lichts nutzt. Die Methode ist auch unter UV/VIS-Spektralphotometrie oder als Elektronenabsorptionsspektroskopie bekannt. Im Alltag werden die verwendeten Geräte häufig ungenau als Photometer bezeichnet.

Lichtabsorption im Bereich der sichtbaren und ultravioletten Strahlung wird durch Elektronenübergänge zwischen verschiedenen Zuständen im Molekül verursacht. Bei diesen Übergängen werden Valenzelektronen (beispielsweise die der p- und d-Orbitalen der äußeren Schalen) angeregt, das heißt, in ein höheres Energieniveau angehoben.

Um ein Elektron beispielsweise von einem besetzten (HOMO) auf ein unbesetztes, höheres Orbital (LUMO) anzuheben, muss die Energie des absorbierten Photons genau der Energiedifferenz zwischen den beiden Energieniveaus entsprechen. Über den Zusammenhang

E=h\cdot f={\frac  {h\cdot c}{\lambda }}

kann die Wellenlänge des absorbierten Lichts für die aufzuwendende Energie berechnet werden, wobei E die Energie, h das plancksche Wirkungsquantum, c die Lichtgeschwindigkeit, f die Frequenz und λ die Wellenlänge der elektromagnetischen Welle sind. Dieser Zusammenhang wird manchmal auch als Einstein-Bohr-Gleichung bezeichnet. Näherungsweise lässt sich dieser Zusammenhang in Form einer zugeschnittenen Größengleichung vereinfacht darstellen:

E=h\cdot f={\frac  {h\cdot c}{\lambda }}\approx {\frac  {1239{,}8\,{\mathrm  {eV}}}{{\frac  {\lambda }{{\mathrm  {nm}}}}}}

Stoffe, die nur im UV-Bereich (λ < 400 nm) absorbieren, erscheinen dem menschlichen Auge farblos. Einen Stoff nennt man dann farbig, wenn er Strahlung im Bereich des sichtbaren Spektrums absorbiert. Dies ist sowohl bei Verbindungen zu erwarten, die über niedrige Anregungsenergien verfügen (π-zu-π*-Übergänge, konjugierten π-Elektronensystemen wie beispielsweise bei den Polyenen), als auch bei anorganischen Ionenkomplexen mit unvollständig aufgefüllten Elektronenniveaus (Beispiel: Cu2+-Verbindungen (meist bläulich – grünlich) gegenüber farblosen Cu+-Verbindungen). Ebenfalls erscheinen Verbindungen farbig, wenn stark polarisierende Wechselwirkungen zwischen benachbarten Teilchen bestehen, wie es z. B. beim gelben AgI der Fall ist. Bei nur einem Absorptionsgebiet nimmt das Auge die zur absorbierten Strahlung komplementäre Farbe wahr.

Grundsätzlich wertet man überwiegend Erscheinungen der Strahlungsabsorption im Rahmen der UV/VIS-Spektroskopie aus. Im Grundaufbau strahlt eine Lichtquelle elektromagnetische Strahlung aus, die über einen Strahlengang mit Spiegeln und weiteren Bauelementen (Details weiter unten) durch die Probe / den Analyten geleitet wird und dann auf einen Detektor trifft. Durch Anregung von Elektronen in der Probe ist die Intensität der Strahlung gegenüber dem originalen Primärstrahl in entsprechenden Bereichen geschwächt. Diese Differenz in der Strahlungsintensität wird gegen die jeweilige Wellenlänge, bei der gemessen wurde, aufgetragen und als Spektrum ausgegeben.

Aufbau eines Zweistrahl-UV/Vis-Spektrometers


Spektrometer für Messungen zwischen 200 und 1100 nm | Wikipedia

Die Lichtquelle strahlt ultraviolettes, sichtbares und nahinfrarotes Licht im Wellenlängenbereich von etwa 200 nm bis 1100 nm aus. Im Monochromator wird zunächst die zur Messung ausgewählte Wellenlänge selektiert, worauf der Lichtstrahl auf den Sektorspiegel fällt. Der Sektorspiegel lässt das Licht abwechselnd durch die Messlösung und durch die Vergleichslösung fallen.

Beide Lösungen befinden sich in sogenannten Küvetten. Die zwei Lichtstrahlen werden im Detektor empfangen und die Intensitäten im Verstärker verglichen. Der Verstärker passt dann die Intensität des Lichtstrahls aus der Vergleichslösung durch Einfahren der Kammblende der Intensität des Lichtstrahls aus der Messlösung an. Diese Bewegung wird auf einen Schreiber übertragen oder die Messwerte an eine Datenverarbeitung weitergegeben.


Schematischer Aufbau eines Zweistrahl-UV/Vis-Spektrometers | Wikipedia

Zunehmend werden küvettenfreie UV/VIS-Spektrometer zur Konzentrationsbestimmung kleiner Probevolumina (unter 2 Mikroliter) von Proben höherer Konzentrationen eingesetzt. Sogenannte Nanophotometer arbeiten mit Schichtdicken in Bereichen von 0,04 mm bis 2 mm. Sie benötigen keine Küvetten, keine Verdünnungen und können Proben mit einem Volumen von nur 0,3 µl analysieren (bei kleinster Schichtdicke), besitzen jedoch aufgrund der geringen Schichtdicke eine höhere Nachweisgrenze. Eine bewährte Technik basiert auf einer Kompression der Probe, welche somit unabhängig von der Oberflächenspannung und Verdunstung der Probe ist. Diese Methode findet Verwendung bei der Analyse von Nukleinsäuren (DNA, RNA, Oligonucleotide) und Proteinen (UV-Absorption bei 280 nm). Nach dem Lambert-Beer’schen Gesetz besteht ein Zusammenhang zwischen Absorption und Schichtdicke. Die Absorptionswerte bei den verschiedenen Schichtdicken (0,04 mm bis 2 mm) können somit berechnet werden. Geringe Schichtdicken wirken wie eine virtuelle Verdünnung der Probe, können jedoch nur bei entsprechend höheren Konzentrationen eingesetzt werden. Oftmals kann daher auf eine manuelle Verdünnung der Probe ganz verzichtet werden.

Aufbau eines Diodenarray-UV/VIS-Spektrometers


Kompaktes Diodenarray-UV/VIS-Spektrometer | Wikipedia

Eine weitere Technologie ist die Diodenarray-Technologie]. Die Probe in der Küvette wird mit einem Lichtstrahl bestrahlt, bestehend aus dem kontinuierlichen Wellenlängenbereich der Lichtquelle (z. B. Xenonblitzlichtlampe, 190 nm bis 1100 nm). Die Probe absorbiert bei einer Messung unterschiedliche Wellenlängen der Lichtquelle. Nicht absorbiertes Licht gelangt durch den Eintrittsspalt und wird an einem Beugungsgitter nach seiner Wellenlänge aufgespalten. Das Spektrum wird mithilfe eines CCD-Sensors detektiert und anschließend ausgewertet. Bei nicht automatisierten Geräten muss die Referenzprobe zusätzlich gemessen werden. Vorteile der Technologie sind kurze Messzeiten, da das gesamte UV/VIS Spektrum mit einer Messung aufgenommen werden kann, ein niedriger Wartungsaufwand, da keine beweglichen Bauteile im Spektrometer vorhanden sind und dass die Geräte kompakt konstruiert werden können.

Dieser Eintrag basiert auf dem Artikel UV/VIS Spektrokospie aus der freien Enzyklopädie Wikipedia. Es gilt die GNU-Lizenz für freie Dokumentation. Eine Liste der Autoren ist auf Wikipedia verfügbar.

Kategorie: Lexikon Stichworte: Spektroskopie

Leser-Interaktionen

Trackbacks

  1. Mikrovolumen-UV/VIS-Spektroskopie in der Onkologie sagt:
    31. Januar 2019 um 13:56 Uhr

    […] Nukleinsäure- und Proteinproben zur Analyse, die aus menschlichem Gewebe extrahiert wurden. Die UV/VIS-Spektroskopie ist unerlässlich, um vor weiteren Experimenten die Konzentration und Reinheit zu bestimmen. Da nur […]

Haupt-Sidebar

Die aktuelle Chemie

Newsletter

  • Unser Newsletter-Archiv

Welkin Media News

Aktuelle Nachrichten aus unseren anderen Online-Portalen Lebensmittel-&Biotechnologie und Österreichische Kunststoffzeitschrift.

  • NIR 2023 – Internationale Konferenz für Nahinfrarotspektroskopie
    am 1. Juni 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Die NIR 2023 - Internationale Konferenz für Nahinfrarotspektroskopie - findet vom 20.- 24. August 2023 erstmals im Congress Innsbruck statt. Das Programm umfasst die Grundlagen der Spektroskopie, methodische und technologische Fortschritte sowie […]

  • ARC 2023 – Call for Abstracts
    am 1. Juni 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Bis zum 30.08.2023 können Beiträge für die Advanced Recycling Conference ARC (28. und 29.11.2023, Köln und online) eingereicht werden. Die Veranstaltung stellt die Vielfalt fortschrittlicher Recyclinglösungen vor und bringt Akteure entlang der […]

  • VERTEX für PP- und PET FDY-Garne
    am 31. Mai 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Mit der neuen Austrofil® VERTEX-Serie präsentiert SML ein völlig neues Anlagenkonzept, das auch für die Verarbeitung von PET geeignet ist. Die Hauptmerkmale von VERTEX sind höhere Anlagengeschwindigkeiten, eine gesteigerte Produktionskapazität […]

  • Busch Austria baut Vakuum-Kompetenzzentrum
    am 30. Mai 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Das Spezialunternehmen für Vakuumpumpen, Gebläse und Kompressoren Busch Austria baut in Korneuburg ein Vakuum-Kompetenzzentrum. Busch und die Pfeiffer Vacuum Austria GmbH werden dort künftig gemeinsam Vakuumlösungen für österreichische Kunden […]

  • Magnetotaktische Bakterien reinigen kontaminiertes Wasser
    am 26. Mai 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) ist es gelungen, uranhaltiges Wasser mittels magnetotaktischer Bakterien zu reinigen. Diese Bakterien binden Uran in der Zellwand und können aufgrund ihrer magnetischen Eigenschaften mittels Magneten […]

  • Semperit übernimmt RICO Group
    am 25. Mai 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Semperit übernimmt mit der Rico Group einen Anbieter von Silikonspritzguss-Werkzeugen und Produzenten von Liquid Silicone-Komponenten. Semperit setzt weiterhin auf den von Rico bereits eingeschlagenen Expansionskurs und führt daher den Bau der […]

  • AKMA-Servomotoren trotzen starker Washdown-Belastung
    am 24. Mai 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Der AKMA-Servomotor von Kollmorgen wurde speziell für Anwendungen mit mittelschwerer und schwerer Washdown-Belastung entwickelt. Er eignet sich für Präzisionsbewegungsanwendungen in der Lebensmittel- und Getränkeindustrie sowie der […]

  • ALPLAindustrial – Verpackungen für die Industrie
    am 23. Mai 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Die ALPLA Group intensiviert mit der neuen Marke ALPLAindustrial sein Engagement bei großvolumigen Kunststoffverpackungen für die Industrie. Durch die Einführung einer eigenen Recycling-Linie mit bis zu 100 Prozent PCR bietet das Unternehmen […]

  • Pseudouridin durch biokatalytische Synthese
    am 22. Mai 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Forschenden der TU Graz ist die Erzeugung des wichtigen mRNA Impfstoffbestandteil Pseudouridin mittels biokatalytischer Synthese gelungen. Die neue Methode erweist sich als effizienter, nachhaltiger und kostengünstiger als die bisher eingesetzte […]

  • AGRANA erweitert Produktionskapazitäten für technische Stärken
    am 19. Mai 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    AGRANA investiert 23 Millionen Euro in die Erweiterung der Produktionskapazitäten für technische Stärken am Produktionsstandort in Gmünd. Die Fertigstellung der neuen Anlage, mit der sich die Produktionskapazität von technischen Stärken um ein […]

Schlagwörter

ABB Aktuelle Nachrichten über BASF analytica Analytik Analytik Jena Automation Automatisierung Awards B&R Borealis BR CEM CO2 Danfoss Digitalisierung Endress+Hauser EndressHauser Evonik FCIO Festo Finance Forschung Foto Freitag FotoFreitag Hardware Industrie 4.0 Jubiläum Kreislaufwirtschaft Labor LANXESS Lenzing Messe Messe München MesseNews Nachhaltigkeit OMV Personalia Publikation Pumpen Recycling Shimadzu Software Studium TU Graz Webinar

Kategorien

Copyright © 2023 · WelkinMedia Fachverlag