• Skip to main content
  • Skip to secondary menu
  • Zur Hauptsidebar springen

Die Chemie Zeitschrift Österreichs

Das unabhängige Traditionsmagazin

  • Das Magazin
    • Blattgeschichte
    • 120 Jahre
    • Abonnement
    • Mediadaten
    • Online-Archiv
  • Resorts
    • Forschung
    • Foto Freitag
    • Messe
    • Publikation
    • Personalia
    • Bildung
    • Termine
    • News-Archiv 2015
    • News-Archiv 2016
    • News-Archiv 2017
    • News-Archiv 2018
    • News-Archiv 2019
  • Studienführer Chemie
  • Chemie-Lexikon
  • Links
    • L&B
    • labor
    • Kunststoff
  • Welkin Media Verlag
Aktuelle Seite: Startseite / Lexikon / UV/VIS-Spektroskopie

UV/VIS-Spektroskopie

30. Januar 2016 von Lexikon

Die UV/VIS-Spektroskopie ist ein zur optischen Molekülspektroskopie gehörendes spektroskopisches Verfahren, das elektromagnetische Wellen des ultravioletten (UV) und des sichtbaren (englisch visible, VIS) Lichts nutzt. Die Methode ist auch unter UV/VIS-Spektralphotometrie oder als Elektronenabsorptionsspektroskopie bekannt. Im Alltag werden die verwendeten Geräte häufig ungenau als Photometer bezeichnet.

Lichtabsorption im Bereich der sichtbaren und ultravioletten Strahlung wird durch Elektronenübergänge zwischen verschiedenen Zuständen im Molekül verursacht. Bei diesen Übergängen werden Valenzelektronen (beispielsweise die der p- und d-Orbitalen der äußeren Schalen) angeregt, das heißt, in ein höheres Energieniveau angehoben.

Um ein Elektron beispielsweise von einem besetzten (HOMO) auf ein unbesetztes, höheres Orbital (LUMO) anzuheben, muss die Energie des absorbierten Photons genau der Energiedifferenz zwischen den beiden Energieniveaus entsprechen. Über den Zusammenhang

E=h\cdot f={\frac  {h\cdot c}{\lambda }}

kann die Wellenlänge des absorbierten Lichts für die aufzuwendende Energie berechnet werden, wobei E die Energie, h das plancksche Wirkungsquantum, c die Lichtgeschwindigkeit, f die Frequenz und λ die Wellenlänge der elektromagnetischen Welle sind. Dieser Zusammenhang wird manchmal auch als Einstein-Bohr-Gleichung bezeichnet. Näherungsweise lässt sich dieser Zusammenhang in Form einer zugeschnittenen Größengleichung vereinfacht darstellen:

E=h\cdot f={\frac  {h\cdot c}{\lambda }}\approx {\frac  {1239{,}8\,{\mathrm  {eV}}}{{\frac  {\lambda }{{\mathrm  {nm}}}}}}

Stoffe, die nur im UV-Bereich (λ < 400 nm) absorbieren, erscheinen dem menschlichen Auge farblos. Einen Stoff nennt man dann farbig, wenn er Strahlung im Bereich des sichtbaren Spektrums absorbiert. Dies ist sowohl bei Verbindungen zu erwarten, die über niedrige Anregungsenergien verfügen (π-zu-π*-Übergänge, konjugierten π-Elektronensystemen wie beispielsweise bei den Polyenen), als auch bei anorganischen Ionenkomplexen mit unvollständig aufgefüllten Elektronenniveaus (Beispiel: Cu2+-Verbindungen (meist bläulich – grünlich) gegenüber farblosen Cu+-Verbindungen). Ebenfalls erscheinen Verbindungen farbig, wenn stark polarisierende Wechselwirkungen zwischen benachbarten Teilchen bestehen, wie es z. B. beim gelben AgI der Fall ist. Bei nur einem Absorptionsgebiet nimmt das Auge die zur absorbierten Strahlung komplementäre Farbe wahr.

Grundsätzlich wertet man überwiegend Erscheinungen der Strahlungsabsorption im Rahmen der UV/VIS-Spektroskopie aus. Im Grundaufbau strahlt eine Lichtquelle elektromagnetische Strahlung aus, die über einen Strahlengang mit Spiegeln und weiteren Bauelementen (Details weiter unten) durch die Probe / den Analyten geleitet wird und dann auf einen Detektor trifft. Durch Anregung von Elektronen in der Probe ist die Intensität der Strahlung gegenüber dem originalen Primärstrahl in entsprechenden Bereichen geschwächt. Diese Differenz in der Strahlungsintensität wird gegen die jeweilige Wellenlänge, bei der gemessen wurde, aufgetragen und als Spektrum ausgegeben.

Aufbau eines Zweistrahl-UV/Vis-Spektrometers


Spektrometer für Messungen zwischen 200 und 1100 nm | Wikipedia

Die Lichtquelle strahlt ultraviolettes, sichtbares und nahinfrarotes Licht im Wellenlängenbereich von etwa 200 nm bis 1100 nm aus. Im Monochromator wird zunächst die zur Messung ausgewählte Wellenlänge selektiert, worauf der Lichtstrahl auf den Sektorspiegel fällt. Der Sektorspiegel lässt das Licht abwechselnd durch die Messlösung und durch die Vergleichslösung fallen.

Beide Lösungen befinden sich in sogenannten Küvetten. Die zwei Lichtstrahlen werden im Detektor empfangen und die Intensitäten im Verstärker verglichen. Der Verstärker passt dann die Intensität des Lichtstrahls aus der Vergleichslösung durch Einfahren der Kammblende der Intensität des Lichtstrahls aus der Messlösung an. Diese Bewegung wird auf einen Schreiber übertragen oder die Messwerte an eine Datenverarbeitung weitergegeben.


Schematischer Aufbau eines Zweistrahl-UV/Vis-Spektrometers | Wikipedia

Zunehmend werden küvettenfreie UV/VIS-Spektrometer zur Konzentrationsbestimmung kleiner Probevolumina (unter 2 Mikroliter) von Proben höherer Konzentrationen eingesetzt. Sogenannte Nanophotometer arbeiten mit Schichtdicken in Bereichen von 0,04 mm bis 2 mm. Sie benötigen keine Küvetten, keine Verdünnungen und können Proben mit einem Volumen von nur 0,3 µl analysieren (bei kleinster Schichtdicke), besitzen jedoch aufgrund der geringen Schichtdicke eine höhere Nachweisgrenze. Eine bewährte Technik basiert auf einer Kompression der Probe, welche somit unabhängig von der Oberflächenspannung und Verdunstung der Probe ist. Diese Methode findet Verwendung bei der Analyse von Nukleinsäuren (DNA, RNA, Oligonucleotide) und Proteinen (UV-Absorption bei 280 nm). Nach dem Lambert-Beer’schen Gesetz besteht ein Zusammenhang zwischen Absorption und Schichtdicke. Die Absorptionswerte bei den verschiedenen Schichtdicken (0,04 mm bis 2 mm) können somit berechnet werden. Geringe Schichtdicken wirken wie eine virtuelle Verdünnung der Probe, können jedoch nur bei entsprechend höheren Konzentrationen eingesetzt werden. Oftmals kann daher auf eine manuelle Verdünnung der Probe ganz verzichtet werden.

Aufbau eines Diodenarray-UV/VIS-Spektrometers


Kompaktes Diodenarray-UV/VIS-Spektrometer | Wikipedia

Eine weitere Technologie ist die Diodenarray-Technologie]. Die Probe in der Küvette wird mit einem Lichtstrahl bestrahlt, bestehend aus dem kontinuierlichen Wellenlängenbereich der Lichtquelle (z. B. Xenonblitzlichtlampe, 190 nm bis 1100 nm). Die Probe absorbiert bei einer Messung unterschiedliche Wellenlängen der Lichtquelle. Nicht absorbiertes Licht gelangt durch den Eintrittsspalt und wird an einem Beugungsgitter nach seiner Wellenlänge aufgespalten. Das Spektrum wird mithilfe eines CCD-Sensors detektiert und anschließend ausgewertet. Bei nicht automatisierten Geräten muss die Referenzprobe zusätzlich gemessen werden. Vorteile der Technologie sind kurze Messzeiten, da das gesamte UV/VIS Spektrum mit einer Messung aufgenommen werden kann, ein niedriger Wartungsaufwand, da keine beweglichen Bauteile im Spektrometer vorhanden sind und dass die Geräte kompakt konstruiert werden können.

Dieser Eintrag basiert auf dem Artikel UV/VIS Spektrokospie aus der freien Enzyklopädie Wikipedia. Es gilt die GNU-Lizenz für freie Dokumentation. Eine Liste der Autoren ist auf Wikipedia verfügbar.

Kategorie: Lexikon Stichworte: Spektroskopie

Leser-Interaktionen

Trackbacks

  1. Mikrovolumen-UV/VIS-Spektroskopie in der Onkologie sagt:
    31. Januar 2019 um 13:56 Uhr

    […] Nukleinsäure- und Proteinproben zur Analyse, die aus menschlichem Gewebe extrahiert wurden. Die UV/VIS-Spektroskopie ist unerlässlich, um vor weiteren Experimenten die Konzentration und Reinheit zu bestimmen. Da nur […]

Haupt-Sidebar

Die aktuelle Chemie

Newsletter

  • Unser Newsletter-Archiv

Termineintrag

Welkin Media News

Aktuelle Nachrichten aus unseren anderen Online-Portalen Lebensmittel-&Biotechnologie und Österreichische Kunststoffzeitschrift.

  • Fraunhofer IPMS zeigt neueste photonische Technologien
    am 30. Januar 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Das Fraunhofer IPMS zeigt auf der SPIE Photonics West seine neuesten photonischen Technologien, wie z.B. hochminiaturisierte MEMS-Scanner. Darunter die ersten hybriden 2D-Vektorscannermodule mit elektromagnetischem Antrieb sowie ein darauf […]

  • Praxisforum Kunststoffrezyklate 2023
    am 30. Januar 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Das Fraunhofer LBF lädt vom 29. - 30. März 2023 zum 5. Praxisforum Kunststoffrezyklate mit erneutem Fokus auf werkstofflichem Recycling. Die Tagung bietet spannende Erfahrungsberichte zu innovativen Ansätzen führender Unternehmen und den […]

  • Biobasierte Flammschutzmittel für Bio-Kunststoffe
    am 27. Januar 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Die Fraunhofer Institute WKI und IAP verzeichnen erste Erfolge in der Entwicklung von biobasierten Flammschutzmitteln in Biokunststoffen. Flammgeschützter Biokunststoff könnte zu Bauteilen für Elektrotechnik und Elektronik verarbeitet werden, […]

  • Ecoplast erhält ISCC PLUS Zertifizierung
    am 25. Januar 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Ecoplast, eine Tochtergesellschaft von Borealis, ist als erster mechanischer Polyolefinrecycler Österreichs ISCC PLUS-zertifiziert. Das mechanische Recycling, wie es am Ecoplast-Standort durchgeführt wird, ist eine Schlüsselkomponente des […]

  • DACHSER erwirbt Lebensmittellogistiker Müller
    am 23. Januar 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    DACHSER übernimmt mit der niederländischen Transportgroep A. Müller B.V. einen der führenden Lebensmittellogistiker in den Niederlanden. Als Teil von DACHSER erhält Müller sowohl Zugang zum DACHSER Food Logistics-Netzwerk in Deutschland, als […]

  • Achim Sties ist neuer Leiter der BASF-Geschäfts­einheit Plastic Additives
    am 23. Januar 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    BASF hat mit Wirkung zum 01. Jänner 2023 Dr. Achim Sties zum Leiter der globalen Geschäftseinheit Plastic Additives ernannt. Bereits in seiner vorherigen Funktion leitete Achim Sties das Plastic Additives Geschäft von BASF in Europa. Das […]

  • Austrotherm erweitert XPS-Dämmstoff-Produktion
    am 20. Januar 2023 von Birgit Fischer (Österreichische Kunststoffzeitschrift)

    Austrotherm hat seinen XPS-Dämmstoff-Produktionsstandort in Purbach am Neusiedler See um 20 Millionen Euro ausgebaut. Die neue Produktionshalle punktet mit modernster Extruder-Technologie, Energieeffizienz und nachhaltiger Gestaltung. The post […]

  • Re-Maxigel Eiscreme-Box aus Styropor Ccycled von BASF
    am 20. Januar 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Der italienische Verpackungshersteller Imballaggi Alimentari hat die Re-Maxigel Box aus Styropor® Ccycled™ von BASF auf den Markt gebracht. Diese Boxen aus expandierbarem Polystyrol (EPS) sind extrem leistungsstark und wurden ursprünglich für […]

  • RecycleMe und Reclay Systems in Österreich mit neuer Führung
    am 19. Januar 2023 von Kerstin Sochor (Österreichische Kunststoffzeitschrift)

    Laut einer Statistik[1] der Arbeiterkammer Österreich lag der Frauenanteil in der Geschäftsführung der 200 umsatzstärksten Unternehmen Österreichs lediglich bei 8,9 Prozent. Im Global Gender Gap Report 2021[2] des Weltwirtschaftsforums (WEF) […]

  • Robotics Day an der FH Technikum Wien
    am 18. Januar 2023 von Birgit Fischer (Lebensmittel- & Biotechnologie)

    Die FH Technikum Wien bietet am 26. Januar 2023 beim Robotics Day auf ihrem Campus Einblick in die vielfältige Welt der Robotik. Aktuelle Errungenschaften werden im Rahmen des Robotics Talks der österreichischen GMAR präsentiert, Workshops bieten […]

Schlagwörter

ABB Aktuelle Nachrichten über BASF analytica Analytik Analytik Jena Automation Automatisierung Awards B&R Bayer Borealis BR CEM Danfoss Digitalisierung Endress+Hauser Evonik FCIO Festo Finance Forschung Foto Freitag FotoFreitag Hardware Huber Industrie 4.0 Jubiläum Labor LANXESS Lenzing Messe Messe München MesseNews Nachhaltigkeit Nano OMV Personalia Polymerforschung Publikation Pumpen Shimadzu Software Studium TU Graz Webinar

Kategorien

Copyright © 2023 · WelkinMedia Fachverlag