Am Karlsruher Instituts für Technologie (KIT) wurde eine datensichere Trainingsplattform für intelligente Industrieroboter entwickelt. Durch Federated Learning lassen sich Trainingsdaten sogar mehrerer Unternehmen nutzen, ohne dass Beteiligte sensible Unternehmensdaten herausgeben müssen.
Für das Training von KI gesteuerten Robotern sind bislang sehr große Datenmengen nötig, über die aber nur die wenigsten Unternehmen verfügen.
Federated Learning für Industrieroboter
„Bei herkömmlichen maschinellen Lernmethoden werden alle Daten gesammelt und die KI auf einem zentralen Server trainiert“, sagt Maximilian Gilles vom Institut für Fördertechnik und Logistiksysteme (IFL) am KIT. Durch gemeinsames, aber örtlich getrenntes Lernen, auch Federated Learning genannt, lassen sich Trainingsdaten von mehreren Stationen, aus mehreren Werken oder sogar mehreren Unternehmen nutzen, ohne dass Beteiligte sensible Unternehmensdaten herausgeben müssen.
„Damit konnten wir jetzt autonome Greifroboter in der Logistik so trainieren, dass sie in der Lage sind, auch solche Artikel zuverlässig zu greifen, die sie vorher noch nicht gesehen haben“, so Gilles. Aufgrund der Vielfalt der Gegenstände in einem Industrielager sei das eine sehr anspruchsvolle Aufgabe.
Training ohne zentrales Datensammeln
Für das Training gab es im 2021 gestarteten Projekt FLAIROP, das jetzt abgeschlossen ist, keinen Austausch von Daten wie Bildern oder Greifpunkten. Es wurden lediglich die lokalen Parameter der neuronalen Netze, also stark abstrahiertes Wissen, zu einem zentralen Server übertragen. Dort wurden die Gewichte von allen Stationen gesammelt und mithilfe verschiedener Algorithmen zusammengeführt. Dann wurde die verbesserte Version zurück auf die Stationen vor Ort gespielt und auf den lokalen Daten weiter trainiert. Dieser Prozess wurde mehrfach wiederholt.
„Unsere Ergebnisse zeigen, dass mit Federated Learning kollaborativ robuste KI-Lösungen für den Einsatz in der Logistik erzeugt werden können, ohne dabei sensible Daten zu teilen“, sagt Sascha Rank vom Institut für Angewandte Informatik und Formale Beschreibungsmethoden (AIFB) des KIT, das ebenfalls Partner in FLAIROP war.
Zukünftig wollen die Forschenden ihr Federated-Learning-System so weiterentwickeln, dass es als Plattform unterschiedlichen Unternehmen ermöglicht, Robotersysteme gemeinsam zu trainieren, ohne untereinander Daten teilen zu müssen. Für die weitere Forschung suchen Maximilian Gilles und sein Team Partner aus Industrie und Forschung.
Für das Training der Roboter wurden insgesamt fünf autonome Kommissionierstationen aufgebaut. Zwei am IFL sowie drei bei der Firma Festo SE mit Sitz in Esslingen am Neckar.
Wir freuen uns, dass es uns gelungen ist zu zeigen, dass Roboter voneinander lernen können, ohne sensible Daten und Betriebsgeheimnisse zu teilen. Dadurch schützen wir die Daten unserer Kundinnen und Kunden und wir gewinnen zudem an Geschwindigkeit, weil die Roboter auf diese Weise viele Aufgaben schneller übernehmen können. So können die kollaborativen Roboter zum Beispiel Produktionsmitarbeitende bei sich wiederholenden, schweren und ermüdenden Aufgaben unterstützen.
Jan Seyler, Head of Advanced Develop. Analytics and Control bei Festo
Das Forschungsprojekt FLAIROP
Das Projekt FLAIROP (steht für: Federated Learning for Robot Picking) war eine Partnerschaft zwischen kanadischen und deutschen Organisationen und Firmen. Die kanadischen Projektpartner konzentrierten sich auf Objekterkennung durch Deep Learning, Explainable AI und Optimierung. Die deutschen Partner brachten ihre Expertise in der Robotik, beim autonomen Greifen durch Deep Learning und in der Datensicherheit ein.